تحقیق بتن سبک

تحقیق بتن سبک

این تحقیق بصورت Word و با موضوع بتن سبک انجام گرفته است.تحقیق برای مهندسی عمران مناسب است و در 98 صفحه می باشد. می توانید این تحقیق را بصورت کامل و آماده تحویل از پایین همین صفحه دانلود نمایید.

وزن مخصوص فضایی بتن سبک بستگی به روش ساخت، مقدار و انواع اجزای متشکله آن دارد.تمام بتن‌های سبک، وزن مخصوص کم خود را مدیون وجود هوا در ساختمان داخلیشان هستند. بتن سبک، با وزن مخصوص 300 تا 1000 کیلوگرم در متر مکعب را برای سیستمهای عایق بندی و همچنین به عنوان پرکننده و همچنین برای تحمل بارها می‌توان مورد استفاده قرار داد.

با حذف ریزدانه از دانه‌بندی بتنی، بتنی بدست می‌آید که در اصطلاح«بتن بدون ریزدانه» نامیده می‌شود.

با جانشین کردن دانه‌های سنگی بتن معمولی با مصالح سنگی همانند سنگ پا، رس منبسط شده و یا پرلیت و غیره بدست می‌آید که در اصطلاح به نام «بتن سبک» نامیده می‌شود.

فهرست مطالب

1. مقدمه. 12. پرلیت و مشخصات آن. 22-1. تکنیک و روش تولید پرلیت منبسط شده32-2. محصولات تولید شده از پرلیت.. 32-3. تاریخچه پرلیت.. 42-4. خواص منحصر به فرد پرلیت و نتایج استفاده از آن در کشاورزی و باغبانی.. 52-5. پرلیت و کاربرد آن در اهداف صنعت کشاورزی.. 62-5-1. استفاده از پرلیت بعنوان بستر کاشت گیاه و بستری برای رشد و پرورش بذر62-5-2. اصلاح خاک و چمن.. 62-5-3. استفاده در زمینه های هیدروپونیک.. 62-5-4. استفاده بعنوان Carrierحمل کننده73. ویژگیهای مهم بتن.. 73-1. کلیات.. 73-2. کارایی بتن.. 73-3. اسلامپ.. 73-4. مصالح مصرفی.. 83-5. مواد افزودنی.. 83-6. درجه حرارت.. 83-7. پایایی (دوام) بتن.. 93-8. نسبت آب به سیمان. 93-9. حداقل مقدار سیمان. 93-10. بتن با حباب هوا113-11. بتن مقاوم در برابر حملات شیمیایی.. 123-12. بتن مقاوم در برابر سایش... 143-12-1. مقاومت فشاری.. 143-12-2. دانه بندی مصالح. 143-12-3. اسلامپ.. 143-12-4. میزان هوا143-12-5. فرسایش سطح بتن.. 143-12-6. پرداخت سطح بتن.. 153-12-6. عمل آوردن. 153-13.مقاومت بتن.. 153-14. نسبت آب به سیمان. 154. نوع سیمان. 164-1. مقدمه. 164-2. تاریخچه. 175. مقایسه بتن پیش تنیده شده با بتن آرمه. 186. مزایا و معایب بتن پیش تنیده186-1. مزایا186-2. معایب.. 197. فولاد. 207-1. مفتول ها207-2. کابل ها207-3. میلگیردهای آلیاژ دار207-4. خوردگی فولاد بتن پیش تنیده208. پرلیت.. 218-1. نقش پرلیت در جایگاه طیور228-2. نقش پرلیت در تغذیه. 228-3. مصارف عمده پرلیت.. 239. پرلیت نوع منبسط شده239-1. دارو سازی.. 249-2. عایق حرارتی.. 249-3. متالورژی.. 249-4. مصارف صنعتی.. 249-5. عایق کاری در دماهای پایین.. 259-6. عایق کاری در دمای بالا. 259-7. مصرف پرلیت در نسوزها و صنایع ریخته‌گری.. 259-8. تولید مواد منفجره269-10. مصرف پرلیت در کمک صافی‌ها269-11. مصارف باغبانی و کشاورزی.. 269-12. سرامیک.. 279-13. سیمان. 279-14. زئولیت مصنوعی.. 279-15. ساینده ها289-16. مصالح ساختمانی.. 289-17. قطعات ساختمانی.. 289-18. پلاستر های ساخته شده معمولی.. 299-19. پلاستر های ویژه309-20. عایقهای پرکننده بنایی.. 309-21. آجرهای عایق صوتی.. 309-22. پوشش های سقف.. 319-23. عایق کاری کف.. 329-24. عایق کاری/ بتن سبک.. 329-25. پوشش‌های لوله. 339-26. سنگ نما339-27. پرکننده349-28. حمل کننده349-29. جذب کننده349-30. محصولات پیش ساخته. 359-31. مصرف پرلیت در گل حفاری.. 359-32. داروسازی.. 359-33. سایر موارد استفاده پرلیت.. 3510. استانداردها3511. پرلیت خرد شده و غربال شده3612. نوع منبسط شده3712-1. پرلیت منبسط شده3812-2. کاربرد پرلیت در صنعت ساختمان. 4112-3. کاربرد پرلیت در بتن سبک عایق.. 4112-4. کاربرد پرلیت در بتن پاشی(شات کریت)4112-5. کاربرد پرلیت در عایق حرارتی.. 4212-6. کف های شناور4212-7. استفاده از پرلیت در ساخت انواع اندودها یا پلاسترهای پرلیتی.. 4213. مزایای کلی مصالح سبک پرلیتی.. 4313-1. وزن کم. 4313-2. کاهش ریسک.. 4313-3. عایق حرارتی و صوتی.. 4313-4. صرفه جویی اقتصادی.. 4413-5. ضد اشتعال. 4413-6. ابزار پذیری و میخ خوری.. 4413-7. ریزش کم. 4413-8. شات کریت.. 4513-9. نازک کاری.. 4513-10. فساد ناپذیری.. 4513-11. شیب بندی کف و بام. 4513-12. مقاومت.. 4514. مزایای استفاده از دیوارهای پرلیتی.. 4515. بتن سبک با ورمیکیولیت.. 4616. مشخصات عمومی و کلی پرلیت.. 4917. زمین شناسی و پراکندگی پرلیت در ایران. 5218. بررسی وضعیت پرلیت در جهان و ایران. 5219. بتن های سبک.. 5519-1 . مهمترین مزایای بتن سبک در مقایسه با بتن معمولی.. 5619-1-1. سبک بودن. 5619-1-2. عایق گرما5619-1-3. عایق صوتی.. 5719-1-4. قابلیت برش.. 5719-2. انواع بتن سبک.. 5719-2-1. بتن سبک سبکدانه. 5719-2-2. بتن سبک لیکا5719-2-3. بتن سبک پرلیتی.. 5919-2-4. بتن های سبک متخلخل یا سلولی.. 6019-2-5. بتن سبک گازی.. 6020. بتن سبک کفی.. 6120-1. مواد خام مورد نیاز برای تولید بتن سبک کفی.. 6220-2. مهمترین مزایای بتن کفی.. 6320-3. کاربرد بتن سبک کفی در ساختمان. 6420-3-1. شیب بندی پشت بام. 6420-3-2. کف بندی طبقات.. 6420-3-3. بلوکهای غیر باربر. 6520-3-4. دیوار های جدا کننده یکپارچه و بلوک های جداکننده و پانل های سبک.. 6520-4. دیگر کاربرد های بتن سبک کفی.. 6521. قطعات حجیم در کاربرد های نیمه سازه ای.. 6622. کاربردهای سازه ای.. 6623. بتن سبک هوادار6624. خصوصیات بتن سبک.. 6725. بتن سبک EPS. 6825-1. کاربرد بتن سبک ( فوم سِم ) در ساختمان. 6826. تاریخچه ساخت و کاربرد بتن سبک.. 6927. طبقه بندی بتن سبک بر مبنای مقاومتی.. 7027-1. بتن سبک غیرسازه‌ای.. 7127-2. بتن سبک با مقاومت متوسط.. 7227-3. بتن سبک سازه ای.. 7228. مصالح طبیعی سبک.. 7328-1. سنگ پا7328-2.پوکه معدنی.. 7328-3.توف.. 7329. مصالح طبیعی عمل آوری شده7429-1.رس منبسط شده7429-2.دیاتومیت.. 7429-3.پرلیت منبسط شده7429-4.شیل‌ منبسط شده7529-5.زغال سنگ منبسط شده7529-6.ورمیکولیت پوسته پوسته شده7530. سبک دانه ها7530-1. مقدمه. 7530-2. تعریف سبک دانه ها7630-3.تاریخچه. 7630-4. انواع مختلف سبک دانه ها7730-5. فرآیند تولید سبک دانه ها7830-6. خواص فیزیکی.. 8030-7. ترکیب مینرالی وشیمیایی.. 8330-8 . خصوصیات مینرالوژی مهم سبک دانه ها8430-8-1. سبک دانه های تولیدی از سنگ خارا8430-8-2. ورسالایت.. 8430-8-3. ته مانده ی منبسط شده زغال سنگ.. 8530-8-4. شیل منبسط شده8630-9. ریز ساختار دانه ها86نتیجه گیری.. 89

فهرست شکل ها و جدول ها

جدول1: مقایسه انواع بتن سبک با آجر و بتن معمولی.. 1

جدول 2 : آنالیز عناصر و ترکیبات متشکله پرلیت.. 4

جدول3: میزان اسلامپ برای اعضا وقطعات بتنی.. 8

جدول4: نسبت آب به سیمان با توجه به شرایط رویارویی بتن.. 9

جدول 5: حداقل مقدار سیمان لازم در بتن برای حصول پایایی در شرایط محیطی مختلف.. 10

جدول6 : مقدار درصد هوای توصیه شده برای بتن های با حباب هوا مقاوم در برابر یخزدگی.. 12

جدول 7 : انتخاب نوع سیمان برای بتن هایی که در معرض سولفاتها قرار می گیرند. 13

جدول 8: حداکثر نسبت آب به سیمان مجاز برای بتن با مقاومتهای فشاری مختلف.. 15

جدول 9 : خواص فیزیکی پرلیت.. 40

جدول 10 : پرلیت در ساخت بتن سبک عایق.. 41

جدول 11 : قابلیت انتقال حرارت در ملات پلاستر. 43

جدول 12: ترکیب عمومی پرلیت.. 51

جدول13: کاربردهاى لیکا بر حسب اندازه دانه ها59

جدول 14 : ضریب هدایت حرارتی فوم بتن سب.. 64

شکل 1 : تصویری از سبک دانه. 76

شکل 2: فرایند تولید سبک دانه ها79

جدول 15: خواص فیزیکی 4 نوع سبک دانه مورد بررسی.. 81

شکل 3 : دستگاه اندازه گیری آزمون حالت اشباع. 81

جدول 16: داده های مربوط به آزمون حالت اشباع(درصد ها بر حسب درصد حجمی)82

شکل 4 : حالت گرافیکی داده های جدول 16. 82

جدول 17: ترکیب شیمیایی 4نوع سبک دانه مورد بررسی.. 83

شکل 5 : الگوی تفرق سبک دانه ی ساخته شده از سنگ خارا84

شکل 6 : الگوی تفرق سبک دانه ی ورسالایتی.. 85

شکل 7 : الگوی تفرق سبک دانه ی ته مانده ی منبسط شده زغال سنگ.. 85

شکل 8 : الگوی تفرق شیل منبسط شده86

شکل 9 : ریز ساختار سبک دانه ی ساخته شده از سنگ خارا87

شکل 10 : ریز ساختار ورسالایت.. 87

شکل 11 : ریز ساختار ته مانده ی منبسط شده ی زغال سنگ.. 88

شکل 12 : ریز ساختار شیل منبسط شده88



خرید و دانلود تحقیق بتن سبک


دانلود مقاله تحلیل غیر خطی تیرهای بتن آرمه تحت اثر پیچش و خمش با استفاده از روش اجزای محدود

دانلود مقاله تحلیل غیر خطی تیرهای بتن آرمه تحت اثر پیچش و خمش با استفاده از روش اجزای محدود

دانلود مقاله با موضوع تحلیل غیر خطی تیرهای بتن آرمه تحت اثر پیچش و خمش با استفاده از روش اجزای محدود

نوع فایل PDF 

تعداد صفحات : 9

شرح محتوا

چکیده مقاله:

در مقاله حاضر از یک مدل سه بعدی اجزائ محدود جهت بررسی رفتار غیر خطی مقاطع بتن آرمه در حالات کلی بارگذاری و بخصوص در حالت وجود لنگر پیچشی استفاده شده است. در برنامه کامپیوتری ای که به همین منظور نوشته شده، المان بیست گره ای سه بعدی جهت مدل نمودن بتن و نیز المانهای محوری مدفون برای میلگردها بکار گرفته شده است. رفتار بتن در فشار با استفاده از یک مدل پلاستیک بیان گردیده و در کشش نیز نحوه ظهور و گسترش ترکها با استفاده مدل شده است. همچنین در این تحقیق توجه ویژه ای به پدیده کاهش (smeared crack) از تئوری ترک گسترش یافته که در حالت وجود کرنشهای کششی در جهات متعامد اتفاق می افتد (compression softeneing) مقاومت فشاری بتن شده، و دقت پاره ای از روابط موجود در این زمینه مورد بررسی قرار گرفته شده است. تحلیل تیرهای بتن آرمه تحت اثر پیچش و نیز تحت اثر توام پیچش و لنگر خمشی با استفاده از مدل فوق و مقایسه نتایج بدست آمده با نتایج آزمایشگاهی موجود نشان میدهد که مدل ارائه شده قادر است که با دقت قابل قبولی رفتار غیر خطی سازه های بتن آرمه را در حالات عمومی بارگذاری پیش بینی کرده و از این رو می توان آنرا با اطمینان خوبی برای مطالعه و بررسی رفتار غیر ارتجاعی سه بعدی این سازه ها بکار برد

کلیدواژه‌ها:

اجزائ محدود، بتن آرمه، پیچش، پلاستیسیته، ترک گسترش یافته، نرم شدگی فشاری



خرید و دانلود دانلود مقاله تحلیل غیر خطی تیرهای بتن آرمه تحت اثر پیچش و خمش با استفاده از روش اجزای محدود


پروژه و تحقیق- کاربرد کامپوزیت در سازه‌های بتن آرمه- در 32 صفحه-docx

پروژه و تحقیق- کاربرد کامپوزیت در سازه‌های بتن آرمه- در 32 صفحه-docx

 

 خوردگی قطعات فولادی در سازه‌های مجاور آب و نیز خوردگی میلگردهای فولادی در سازه‌های بتن آرمه ای که در معرض محیط‌های خورندة کلروری و کربناتی قرار دارند، یک مسالة بسیار اساسی تلقی می‌شود. در محیط‌های دریایی و مرطوب وقتی که یک سازة بتن‌آرمة معمولی به صورت دراز مدت در معرض عناصر خورنده نظیر نمک‌ها، اسید‌ها و کلرورها قرار گیرد، میلگردها به دلیل آسیب دیدگی و خوردگی، قسمتی از ظرفیت خود را از دست خواهند داد. به علاوه فولادهای زنگ زده بر پوستة بیرونی بتن فشار می‌آورد که به خرد شدن و ریختن آن منتهی می‌شود. تعمیر و جایگزینی اجزاء فولادی آسیب دیده و نیز سازة بتن آرمه‌ای که به دلیل خوردگی میلگردها آسیب دیده است، میلیون‌ها دلار خسارت در سراسر دنیا به بار آورده است. به همین دلیل سعی شده که تدابیر ویژه‌ای جهت جلوگیری از خوردگی اجزاء فولادی و میلگرد‌های فولادی در بتن اتخاذ گردد که از جمله می‌توان به حفاظت کاتدیک اشاره نمود. با این وجود برای حذف کامل این مساله، توجه ویژه ای به جانشینی کامل اجزاء و میلگردهای فولادی با یک مادة جدید مقاوم در مقابل خوردگی معطوف گردیده است.  از آن‌جا  که  کامپوزیت‌های FRP (Fiber Reinforced Polymers/Plastics) بشدت در مقابل محیط‌های قلیایی و نمکی مقاوم هستند که در دو دهة اخیر موضوع تحقیقات گسترده‌ای جهت جایگزینی کامل با قطعات و میلگردهای فولادی بوده‌اند. چنین جایگزینی بخصوص در محیط‌های خورنده نظیر محیط‌های دریایی و ساحلی بسیار مناسب به نظر می‌رسد. در این مقاله مروری بر خواص، مزایا و معایب مصالح کامپوزیتی FRP  صورت گرفته و قابلیبت کاربرد آنها به عنوان جانشین کامل فولاد در سازه‌های مجاور آب و بخصوص در سازة بتن آرمه، به جهت حصول یک سازة کاملاً مقاوم در مقابل خوردگی، مورد بحث قرار خواهد گرفت.

 

1 مقدمه

 

بسیاری از سازه‌های بتن آرمة موجود در دنیا در اثر تماس با سولفاتها، کلریدها و سایر عوامل خورنده، دچار آسیب‌های اساسی شده‌اند. این مساله هزینه‌های زیادی را برای تعمیر، بازسازی و یا تعویض سازه‌های آسیب ‌دیده در سراسر دنیا موجب شده است. این مساله و عواقب آن گاهی نه تنها به عنوان یک مسالة مهندسی، بلکه به عنوان یک مسالة اجتماعی جدی تلقی شده است ]1[. تعمیر و جایگزینی سازه‌های بتنی آسیب‌دیده میلیون‌ها دلار خسارت در دنیا به دنبال داشته است. در امریکا، بیش از 40 درصد پلها در شاهراهها نیاز به تعویض و یا بازسازی دارند ]2[. هزینة بازسازی و یا تعمیر سازه‌های پارکینگ در کانادا، 4 تا 6 میلیارد دلار کانادا تخمین زده شده است ]3[. هزینة تعمیر پلهای شاهراهها در امریکا در حدود 50 میلیارد دلار برآورد شده است؛ در حالیکه برای بازسازی کلیة سازه‌های بتن آرمة آسیب‌دیده در امریکا در اثر مسالة خوردگی میلگردها، پیش‌بینی شده که به بودجة نجومی 1 تا 3 تریلیون دلار نیاز است ]3[ !

 

از مواردی که سازه‌های بتن آرمه به صورت سنتی مورد استفاده قرار می‌گرفته، کاربرد آن در مجاورت آب و نیز در محیط‌های دریایی بوده است. تاریخچه کاربرد بتن آرمه و بتن پیش‌تنیده در کارهای دریایی به سال 1896 بر می‌گردد ]4[. دلیل عمدة این مساله، خواص ذاتی بتن و منجمله مقاومت خوب و سهولت در قابلیت کاربرد آن چه در بتن‌ریزی در جا و چه در بتن پیش‌تنیده بوده است. با این وجود شرایط آب و هوایی و محیطی خشن و خورندة اطراف سازه‌های ساحلی و دریایی همواره به عنوان یک تهدید جدی برای اعضاء بتن آرمه محسوب گردیده است. در محیط‌های ساحلی و دریایی، خاک، آب زیرزمینی و هوا، اکثراً حاوی مقادیر زیادی از نمکها شامل ترکیبات سولفور و کلرید هستند.

 

در یک محیط دریایی نظیر خلیج فارس، شرایط جغرافیایی و آب و هوایی نامناسب، که بسیاری از عوامل خورنده را به دنبال دارد، با درجة حرارت‌های بالا و نیز رطوبت‌های بالا همراه شده که نتیجتاً خوردگی در فولادهای به کار رفته در بتن آرمه کاملاً تشدید می‌شود. در مناطق ساحلی خلیج فارس، در تابستان درجة حرارت از 20 تا 50 درجة سانتیگراد تغییر می‌کند، در حالیکه گاه اختلاف دمای شب و روز، بیش از 30 درجة سانتیگراد متغیر است. این در حالی است که رطوبت نسبی اغلب بالای 60 درصد بوده و بعضاً نزدیک به 100 درصد است. به علاوه هوای مجاور تمرکز بالایی از دی‌اکسید گوگرد و ذرات نمک دارد [5]. به همین جهت است که از منطقة دریایی خلیج فارس به عنوان یکی از مخرب‌ترین محیط‌ها برای بتن در دنیا یاد شده است [6]. در چنین شرایط، ترک‌ها و ریزترک‌های متعددی در اثر انقباض و نیز تغییرات حرارتی و رطوبتی ایجاد شده، که این مساله به نوبة خود، نفوذ کلریدها و سولفاتهای مهاجم را به داخل بتن تشدید کرده، و شرایط مستعدی برای خوردگی فولاد فراهم می‌آورد [7-9]. به همین جهت بسیاری از سازه‌‌های بتن مسلح در نواحی ساحلی ایران نظیر سواحل بندرعباس، در کمتر از 5 سال از نظر سازه‌ای غیر قابل استفاده گردیده‌اند.

 

نظیر این مساله برای بسیاری از سازه‌های در مجاورت آب، که در محیط دریایی و ساحلی قرار ندارند نیز وجود دارد. پایه‌های پل، آبگیرها، سدها و کانال‌های بتن آرمه نیز از این مورد مستثنی نبوده و اغلب به دلیل وجود یون سولفات و کلرید، از خوردگی فولاد رنج می‌برند.

 

 

 

2 راه حل مساله

 

تکنیک‌هایی چند، جهت جلوگیری از خوردگی قطعات فولادی الحاقی به سازه و نیز فولاد در بتن مسلح توسعه داده شده و مورد استفاده قرار گرفته است که از بین آنها می‌توان به پوشش اپوکسی بر قطعات فولادی و  میلگردها، تزریق پلیمر به سطوح بتنی و حفاظت کاتدیک میلگردها اشاره نمود. با این وجود هر یک از این تکنیک‌ها فقط تا حدودی موفق بوده است [10]. برای حذف کامل مساله، توجه محققین به جانشین کردن قطعات فولادی و میلگردهای فولای با مصالح جدید مقاوم در مقابل خوردگی، معطوف گردیده است.

 

مواد کامپوزیتی (Fiber Reinforced Polymers/Plastics) FRP  موادی بسیار مقاوم در مقابل محیط‌های خورنده همچون محیط‌های نمکی و قلیایی هستند. به همین دلیل امروزه کامپوزیتهای FRP، موضوع تحقیقات توسعه‌ای وسیعی به عنوان جانشین قطعات و میلگردهای فولادی و کابلهای پیش‌تنیدگی شده‌اند. چنین تحقیقاتی به خصوص برای سازه‌های در مجاورت آب و بالاخص در محیط‌های دریایی و ساحلی، به شدت مورد توجه قرار گرفته‌اند.


3 ساختار مصالح FRP

مواد FRP  از دو جزء اساسی تشکیل می‌شوند؛ فایبر (الیاف) و رزین (مادة چسباننده). فایبرها که  اصولاً الاستیک، ترد و بسیار مقاوم هستند، جزء اصلی باربر در مادة FRP محسوب می‌شوند. بسته به نوع



خرید و دانلود پروژه و تحقیق- کاربرد کامپوزیت در سازه‌های بتن آرمه- در 32 صفحه-docx