مقاله در مورد الگوریتم

مقاله در مورد الگوریتم

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه23

 مقدمه

در سالهای اخیر آمارشناسان به طور زیاد روش‌های الگوریتم مونت کارلوی زنجیر مارکوفی (MCMC) را رسم کرده‌اند. الگوریتم نمونه‌گیری گیبر یکی از بهترین روش‌های شناخته شده است برای آشنایی با شرایط مسأله فرض کنید در بردار تصادفی () برای محاسبه چگالی کناری x ، با مشکل روبرو هستیم اما چگالی‌های شرطی   و   و … در دسترس می‌باشند. در روش نمونه‌گیری گیبس مشاهداتی به صورت غیرمستقیم ازx تولید می‌شود و به کمک آنها چگالی کناری x را بررسی می‌کنیم.

حالا توجه قابل ملاحظه‌ای به الگوریتم متروپولیس- هستینگس[1] تخصیص داده شده است که توسط متروپولیس و روسنبلوس[2]، تلر[3] (1953) گسترش و بعداً توسط هستینگس (1970) نظم داده شده است. الگوریتم M-H به طور زیاد در فیزیک کاربرد دارد و هنوز با وجود مقاله‌ای که توسط هستینگس ارائه شده است، به طور خیلی کم برای آمارشناسان شناخته شده است.

به دلیل سودمندی الگوریتم M-H ، کاربردهای آن به طور مداوم ظاهر می‌شود. برای مثال‌های جدید مولر[4] (1993)، چیب وگریبزگ[5]   (1994) و فیلیپس و اسمیت[6] (1994) را ببینید.

ما مقدمه‌ای را از این الگوریتم تهیه کرده‌ایم که از اصول اولیه آن مشتق شده است این مقاله به تنهایی مربوط به تئوری زنجیر مارکوف است. مطالب مربوط به این مقاله چنان که در پایین می‌آید به بحث گذاشته می‌شود. در بخش 2،‌ ما به طور خلاصه مشابه روش‌پذیرش- رد کردنی را مرور می‌کنیم. اگر چه MCMC نیست ولی بعضی از تفسیرهایی که در الگوریتم متروپولیس- هستینگس ظاهر می‌شود را به کار می‌برد و این مقدمه ای خو


[1] Metropolis-Hastings

[2] Rosenbluth

[3] Teller

[4]Muller

[5] chib and Greenberg

[6] Smith



خرید و دانلود مقاله در مورد الگوریتم


نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.